Tailoring magnetic dipole emission by coupling to magnetic plasmonic anapole states

Author:

Pan Gui-Ming1ORCID,Yang Li-Feng2,Shu Fang-Zhou1,Meng Yan-Long1,Hong Zhi1ORCID,Yang Zhong-Jian3ORCID

Affiliation:

1. China Jiliang University

2. First People’s Hospital of Changzhou

3. Central South University

Abstract

The interaction between magnetic quantum emitters and the local electromagnetic environment is a promising method to manipulate the spontaneous emission. However, it is severely limited by the weak interactions between the magnetic component of light and natural materials. Herein, we demonstrate that the special type of anapole states associated with the “onefold” electric toroidal dipole moment can be excited by efficient interaction between magnetic dipole emitters and silver oligomers. Based on magnetic anapole states, the radiative power is effectively suppressed with significant coupling between the emitter and the silver nonamer, physically providing an ideal playground for the study of non-radiative transitions. These findings not only introduce magnetic anapoles to plasmonics but also open a door for the development of new high-performance magnetic-dipole-based optoelectronic devices.

Funder

Natural Science Foundation of Zhejiang Province

Natural Science Foundation of Hunan Province

National Natural Science Foundation of China

Changzhou Basic Research Program

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3