Anapole states and transverse displacement sensing based on the interaction between cylindrical vector beams and Au core-Si shell nanodisks

Author:

Zhang Zhaokun1,Zhu Zhihong1

Affiliation:

1. National University of Defense Technology

Abstract

Precise optical control at the nanoscale is crucial for advancing photonic devices and sensing technologies. Herein, we theoretically introduce what we believe to be a novel approach for nano-optical manipulation, employing Au core-Si shell nanodisks interacting with tightly focused cylindrical vector beams to achieve electric and magnetic anapole states. Our investigations unveil that the interplay between individual nanodisks and radially polarized beams (RPBs) located in the center of RPBs yields a position-dependent electric anapole state. Conversely, under illumination by azimuthally polarized beams (APBs), the electric anapole state exhibits independence from the nanodisk's positioning and is accompanied by significant magnetic dipole excitations. Furthermore, the interaction between APBs and nanodisk multimers enables the formation of a magnetic anapole state, marking an advancement in nano-optical control. This study further explores the application of the position-dependent electric anapole state for nanoscale transverse displacement sensing, which allows for precise determination of the nanodisk's position within a plane. These findings not only facilitate versatile control over anapole states but also set a foundation for integrated displacement sensing technologies on-chip.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3