Dual-wavelength absorption technique for dryness measurement of wet steam

Author:

Chandra Manish1ORCID,Seshadri Satyanarayanan1,Vasa Nilesh J.ORCID

Affiliation:

1. Indian Institute of Technology Madras

Abstract

This paper presents a dual-wavelength absorption-based approach for measuring and validating the steam dryness fraction of wet steam. A thermally insulated steam cell with a temperature-controlled measurement window (up to 200°C) is designed and fabricated to minimize condensation during water vapor measurements at different operating pressures (1–10 bars). Water vapor’s measurement sensitivity and accuracy are limited due to other absorbing and non-absorbing species in wet steam. The measurement accuracy is significantly improved with the proposed dual-wavelength absorption technique (DWAT) measurement method. The influence of modifying factors—namely, pressure and temperature—on water vapor absorbance is minimized by a non-dimensional correction factor. The dryness is measured with the help of the water vapor concentration and wet steam mass present in the steam cell. The DWAT dryness measurement approach is validated using a four-stage separating and throttling calorimeter combined with a condensation rig. The accuracy of the dryness measurement system using this optical method is determined to be ±1% for the range of dryness and operating pressure (1–10 bars) of wet steam.

Funder

Ministry of Education, India

BHEL, India

Fuji Electric, Japan

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3