Condenser Pressure Influence on Ideal Steam Rankine Power Vapor Cycle using the Python Extension Package Cantera for Thermodynamics

Author:

Marzouk Osama A.

Abstract

This study investigates the Rankine vapor power thermodynamic cycle using steam/water as the working fluid, which is common in commercial power plants for power generation as the source of the rotary shaft power needed to drive electric generators. The four-process cycle version, which comprises a water pump section, a boiler/superheater section, a steam turbine section, and a condenser section, was considered. The performance of this thermodynamic power cycle depends on several design parameters. This study varied a single independent variable, the absolute pressure of the condenser, by a factor of 256, from 0.78125 to 200 kPa. The peak pressure and peak temperature in the cycle were fixed at 50 bar (5,000 kPa) and 600°C, respectively, corresponding to a base case with a base value for the condenser's absolute pressure of 12.5 kPa (0.125 bar). The analysis was performed using the thermodynamics software package Cantera as an extension of the Python programming language. The results suggest that over the range of condenser pressures examined, a logarithmic function can be deployed to describe the dependence of input heat, the net output work, and cycle efficiency on the absolute pressure of the condenser. Each of these three performance metrics decreases as the absolute pressure of the condenser increases. However, a power function is a better choice to describe how the steam dryness (steam quality) at the end of the turbine section increases as the absolute pressure of the condenser rises.

Publisher

Engineering, Technology & Applied Science Research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3