Thermodynamic and Performance Assessment of an Innovative Solar-Assisted Tri-Generation System for Water Desalination, Air-Conditioning, and Power Generation

Author:

Fouda A.,Elattar H.,Rubaiee S.,Bin Mahfouz A. S.,Alharbi A. M.

Abstract

Abstract-An innovative tri-generation system powered by solar energy for water desalination, air-conditioning, and electrical power production is proposed and investigated numerically in this paper. The system is designed for small and medium-sized buildings in countries that are rich in solar energy but poor in fossil fuels and water resources. The devised system includes a solar system (evacuated tube collectors and thermal energy storage unit), an Organic Rankine Cycle (ORC), a Humidification and Dehumidification (HDH) water desalination system, and a Desiccant Cooling System (DCS). A detailed parametric study of the developed system is carried out for a wide range of operating conditions and design parameters on the system’s productivity and performance parameters. It is found that: (i) The proposed tri-generation system can deliver high electrical power, fresh water, space cooling capacity, and Energy Utilization Factor (EUF) of 104.5kW, 72.37kg/h, 25.48kW, and 0.2643 respectively. In comparison to the basic system, the EUFimp and ASC,sav parameters were enhanced having maximum values of 69.9% and 41.14% respectively. General numerical correlations derived from the numerical data can predict the system productivity and performance parameters within reasonable error.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3