200-W short-pulse operation of photonic-crystal lasers based on simultaneous absorptive and radiative Q-switching

Author:

Morita RyoheiORCID,Inoue TakuyaORCID,Ueda Takuma,Masuda Masaki,Nigo Kazuki,Yoshida MasahiroORCID,Zoysa Menaka DeORCID,Ishizaki Kenji,Gelleta John,Noda SusumuORCID

Abstract

Short-pulse high-peak-power lasers are crucial laser sources for various applications such as non-thermal ultrafine material processing and eye-safe high-resolution remote sensing. Realizing such operation in a single semiconductor laser chip without amplifiers or external resonators is expected to contribute to the development of compact, affordable laser sources for such applications. In this paper, we demonstrate short-pulse high-peak-power photonic-crystal surface-emitting lasers based on simultaneous absorptive and radiative Q-switching. The proposed device induces an instantaneous and simultaneous decrease in both absorptive and out-of-plane radiation losses due to saturable absorption and self-evolution of the photonic band, respectively, which results in drastic Q-switching operation of the device. Based on this concept, we experimentally demonstrate short-pulse generation with 200-W-class peak power and a pulse width of < 30 ps. In addition, via pulse compression with dispersion compensation, we achieve an even higher peak power of ∼300 W with a shorter pulse width of ∼10 ps.

Funder

Japan Society for the Promotion of Science

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3