High-power and high-beam-quality photonic-crystal surface-emitting lasers: a tutorial

Author:

Noda SusumuORCID,Inoue TakuyaORCID,Yoshida MasahiroORCID,Gelleta John,Zoysa Menaka DeORCID,Ishizaki Kenji

Abstract

Realization of single-mode, high-power and high-beam-quality (namely, high-brightness) semiconductor lasers, which can rival or even replace bulky lasers such as gas, solid, and fiber lasers, is one of the ultimate goals of laser physics and photonics. The demand for such ultimate single-mode high-brightness semiconductor lasers is increasing for a wide variety of emerging applications including next-generation remote sensing for smart mobility and high-precision laser processing for smart manufacturing. Photonic-crystal surface-emitting lasers (PCSELs) show promise to meet these demands, based on their broad-area coherent two-dimensional (2D) resonance at a singularity (Γ) point of their 2D photonic band structure. In this tutorial paper, the lasing principle, theoretical analysis, and experimental demonstration of PCSELs are described. Recent progress in PCSEL development, including the formulation of a design guideline for realizing 100-W-to-kW-class single-mode operation, the experimental demonstration of a brightness of 1 GW cm–2 sr–1, and an extension of the lasing wavelengths to telecommunication and mid-infrared wavelengths are also covered.

Funder

Japan Society for the Promotion of Science

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mixed-mode-state control of photonic-crystal lasers under CW operation;Journal of the Optical Society of America B;2024-01-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3