Construction of classification models for pathogenic bacteria based on LIBS combined with different machine learning algorithms

Author:

Sun Haorui1,Yang Canran1,Chen Youyuan2,Duan Yixiang1ORCID,Fan Qingwen1,Lin Qingyu1ORCID

Affiliation:

1. Sichuan University

2. Ministry of Education, Sichuan University

Abstract

Bacteria, especially foodborne pathogens, seriously threaten human life and health. Rapid discrimination techniques for foodborne pathogens are still urgently needed. At present, laser-induced breakdown spectroscopy (LIBS), combined with machine learning algorithms, is seen as fast recognition technology for pathogenic bacteria. However, there is still a lack of research on evaluating the differences between different bacterial classification models. In this work, five species of foodborne pathogens were analyzed via LIBS; then, the preprocessing effect of five filtering methods was compared to improve accuracy. The preprocessed spectral data were further analyzed with a support vector machine (SVM), a backpropagation neural network (BP), and k -nearest neighbor (KNN). Upon comparing the capacity of the three algorithms to classify pathogenic bacteria, the most suitable one was selected. The signal-to-noise ratio and mean square error of the spectral data after applying a Savitzky–Golay filter reached 17.4540 and 0.0020, respectively. The SVM algorithm, BP algorithm, and KNN algorithm attained the highest classification accuracy for pathogenic bacteria, reaching 98%, 97%, and 96%, respectively. The results indicate that, with the support of a machine learning algorithm, LIBS technology demonstrates superior performance, and the combination of the two is expected to be a powerful tool for pathogen classification.

Funder

Chengdu Technological Innovation RD Project

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3