Carbon Dioxide Concentration Estimation in Nonuniform Temperature Fields Based on Single-Pass Tunable Diode Laser Absorption Spectroscopy

Author:

Choi Junggon1,Bong Cheolwoo1,Yoo Jihyung2,Bak Moon Soo13ORCID

Affiliation:

1. School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea

2. Department of Automotive Engineering, Hanyang University, Seoul, Korea

3. Department of Smart Fab. Technology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea

Abstract

We propose a novel technique to accurately predict carbon dioxide (CO2) concentrations even in flow fields with temperature gradients based on a single laser path absorption spectrum measurement and machine learning. Concentration measurements in typical tunable diode laser absorption spectroscopy are based on a ratio of two integrated absorbances, each from a spectral line with different temperature dependence. However, the inferred concentrations can deviate significantly from the actual concentrations in the presence of temperature gradients. Furthermore, it is also difficult to find an analytical expression to compensate for the effect of nonuniform temperature profiles on concentration measurements. In this study, the entire absorption feature was considered since its shape and peak intensities vary with temperature and concentration. Specifically, a predictive model is obtained in a data-driven manner that can identify and compensate for the effect of a nonuniform temperature field on the spectrum. Despite a very detailed understanding of the CO2 absorption spectrum, it is nearly impossible to collect sufficient spectra for model acquisition by varying all temperature gradient conditions. Therefore, the model was obtained using only simulated data, much like the concept of a “digital twin”. Finally, the predictive performance of the acquired model was verified using experimental data. In all test cases, the predictive performance of the model was superior to that of the two-line method. Additionally, a gradient-weighted regression activation mapping analysis confirmed that the model utilizes both the peak intensities as well as the change in the shape of absorption lines for prediction.

Funder

National Research Foundation of Korea

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3