Polarization image demosaicing and RGB image enhancement for a color polarization sparse focal plane array

Author:

Liu JuORCID,Duan JinORCID,Hao YoufeiORCID,Chen Guangqiu,Zhang Hao,Zheng Yue

Abstract

The color division of focal plane (DoFP) polarization sensor structure mostly uses Bayer filter and polarization filter superimposed on each other, which makes the polarization imaging unsatisfactory in terms of photon transmission rate and information fidelity. In order to obtain high-resolution polarization images and high-quality RGB images simultaneously, we simulate a sparse division of focal plane polarization sensor structure, and seek a sweet spot of the simultaneous distribution of the Bayer filter and the polarization filters to obtain both high-resolution polarization images and high-quality RGB images. In addition, From the perspective of sparse polarization sensor imaging, leaving aside the traditional idea of polarization intensity interpolation, we propose a new sparse Stokes vector completion method, in which the network structure avoids the introduction and amplification of noise during polarization information acquisition by mapping the S1 and S2 components directly. The sparsely polarimetric image demosaicing (Sparse-PDM) model is a progressive combined structure of RGB image artifact removal enhancement network and sparsely polarimetric image completion network, which aims to compensate sparsely polarimetric Stokes parameter images with the de-artifacts RGB image as a guide, thus achieving high-quality polarization information and RGB image acquisition. Qualitative and quantitative experimental results on both self-constructed and publicly available datasets prove the superiority of our method over state-of-the-art methods.

Funder

National Natural Science Foundation of China

Science and Technology Development Program of Jilin Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3