Affiliation:
1. Institute of Plasma Physics of the Czech Academy of Sciences
2. asphericon s.r.o.
Abstract
A technique for measurement of the thickness of optical elements using absolute wavelength scanning interferometry is presented in this paper. To achieve high-grade optical components and systems, the thickness of both planar and non-planar optical components must be measured with an accuracy of a few micrometers. The proposed technique is based on the Fizeau interferometer and interconnects data from three different tunable laser diodes yielding a long effective wavelength range and thus low measurement uncertainty. The uncertainty of the central thickness measurement ranges from hundreds of nanometers to a few microns. The method allows to measure the thickness of both flat optical elements as well as lenses with curved surfaces. Moreover, the areal information provided by the interferometry and its high angle sensitivity help to quickly and precisely align the measured component and reduce misalignment errors. The results of thickness measurements have been validated and cross-tested with other techniques. In addition to the thickness, the technique provides some additional information (wedge, surface form error) in the case of flat samples and can be easily and quickly modified (mounting of a Fizeau transmission sphere) to measure other essential parameters of optical elements. Thus, this one approach can replace many single-purpose measuring devices while maintaining high accuracy.
Funder
Technická Univerzita v Liberci
Ministerstvo Školství, Mládeže a Tělovýchovy
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献