Affiliation:
1. Tianjin University
2. Key Laboratory of Opto-electronics Information Technology
3. Institute of Optical Fiber Sensing of Tianjin University
Abstract
Phase interrogation methods for fiber-optic Fabry–Perot (F-P) sensors may inevitably fail in the field due to the influences of irrelevant factors on signal intensity. To address this severe problem, this Letter proposes an intensity self-compensation method (ISCM) to eliminate the consecutive signal fluctuations of a polarization-based F-P interrogation system caused by multiple factors. By providing only the initial intensities of the reference signals, this attempt realizes the real-time intensity compensation of the output signals without affecting their quadrature relationship. Consecutive intensity fluctuations caused by variation of light source power, fiber loss, and polarization state are reduced to 2%–3% by the ISCM. Furthermore, the method performs ideally under dynamic modulation of the sensor. In addition, it can be applied against the inconsistent fluctuations between signals and is suitable for F-P sensors with single or multiple cavities. Owing to the high efficiency, real-time ability, and no moving parts advantage, the proposed method provides an excellent candidate for improving the accuracy and stability of F-P interrogation systems.
Funder
National Natural Science Foundation of China
Independent Innovation Fund of Tianjin University
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献