Affiliation:
1. Carl von Ossietzky University of Oldenburg
2. TH-Consulting
3. Université Toulouse 3
Abstract
The exploitation of satellite remote sensing is expected to be a critical asset in monitoring floating and submerged plastic litter in all aquatic environments. However, robust retrieval algorithms still havel to be developed based on a full understanding of light interaction with plastic litter and the other optically active constituents of the atmosphere-water system. To this end, we performed laboratory-based hyperspectral reflectance measurements of submerged macroplastics under varying water clarity conditions (clear – 0 mg/L, moderate – 75 mg/L, very turbid – 321.3 mg/L) and submersion depths. This comprehensive optical dataset was used (i) to relate the plastic-related signal to submersion depth and turbidity parameters, and (ii) to investigate the top-of-atmosphere signal through full radiative transfer calculations. Simulated TOA radiation was used to explore the nominal pixel and spectral requirements based on WorldView-3, Sentinel-2, and Sentinel-3 missions with very high to moderate geo-spatial resolutions. Results showed that plastics remained detectable when submerged in the top ∼1 m of the water column regardless of water clarity conditions. At TOA, uncertainties attached to atmospheric correction were shown to be reasonable and acceptable for plastic detection purposes in the infrared part of the spectrum (> 700 nm). The impact of aerosols on the TOA signal was found to be complex as (i) over large plastic patches. The aerosols produced little impact on satellite observations mostly due to adjacency effects and (ii) optical signature from isolated/small extent plastic patches was critically altered suggesting the atmospheric transmittance should be accurately corrected for in plastic detection algorithms. The sensitivity analyses also revealed that the narrow band widths of Sentinel-3 did not improve detection performance compared to the WorldView-3 coarser band widths. It is proposed that high spatial resolution wavebands such as the pan-chromatic could be advantageously explored for submerged plastic monitoring applications.
Funder
Discovery Element of the European Space Agency’s Basic Activities
Deutsche Forschungsgemeinschaft
Subject
Atomic and Molecular Physics, and Optics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献