Uncovering Plastic Litter Spectral Signatures: A Comparative Study of Hyperspectral Band Selection Algorithms

Author:

Olyaei Mohammadali1ORCID,Ebtehaj Ardeshir1ORCID

Affiliation:

1. Department of Civil, Environmental and Geo-Engineering, University of Minnesota, Minneapolis, MN 55455, USA

Abstract

This article provides insights into the optical signatures of plastic litter based on a published laboratory-scale reflectance data set (350–2500 nm) of dry and wet plastic debris under clear and turbid waters using different band selection techniques, including sparse variable selection, density peak clustering, and hierarchical clustering. The variable selection method identifies important wavelengths by minimizing a reconstruction error metric, while clustering approaches rely on the strengths of the correlation and local density of the spectra. Analyses of the data reveal three distinct absorption lines at 560, 740, and 980 nm that produce relatively broad reflectance peaks in the measured spectra of wet plastics around 475–490, 635–650, 810–815, and 1070 nm. The results of band selection consistently identify three important regions across 450–470, 650–690, and 1050–1100 nm that are close to the reflectance peaks of the mean of wet plastic spectra over clear and turbid waters. However, as the number of isolated important wavelengths increases, the results of the methodologies diverge. Density peak clustering identifies additional wavelengths in the short-wave infrared (SWIR) region of 1170–1180 nm) as a result of a high local density of the reflectance points. In contrast, hierarchical clustering isolates more wavelengths in the visible range of 365–400 nm due to weak correlations of nearby wavelengths. The results of the clustering methods are not consistent with the visual inspection of the signatures as peaks and valleys in the spectra, which are effectively captured by the variable selection method. It is also found that the presence of suspended sediments can (i) shift the important wavelength towards higher values in the visible part of the spectrum by less than 50 nm, (ii) attenuate the magnitude of wet plastic reflectance by up to 80% across the entire spectrum, and (iii) manifest a similar spectral signature with plastic litter from 1070 to 1100 nm.

Funder

Legislative-Citizen Commission on Minnesota Resources

NASA’s Remote Sensing Theory program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3