Prediction of radiative properties of spherical microalgae considering internal heterogeneity and optical constants of various components

Author:

Li XingcanORCID,Lv Jinyuan,Lin Li1,Dong Jian1,Liu Zuodong,Yang Jia-Yue1ORCID

Affiliation:

1. Shandong University

Abstract

Most of the current predictions of the radiative properties of microalgae use the homogeneous sphere approximation based on the Mie scattering theory, and the refractive indices of the model were regarded as fixed values. Using the recently measured optical constants of various microalgae components, we propose a spherical heterogeneous model for spherical microalgae. The optical constants of the heterogeneous model were characterized by the measured optical constants of microalgae components for the first time. The radiative properties of the heterogeneous sphere were calculated using the T-matrix method and were well verified by measurements. It shows that the internal microstructure has a more significant effect on scattering cross-section and scattering phase function than absorption cross-section. Compared with the traditional homogeneous models selected with fixed values as refractive index, the calculation accuracy of scattering cross-section of the heterogeneous model improved by 15%-150%. The scattering phase function of the heterogeneous sphere approximation agreed better with measurements than the homogeneous models due to the more detailed description of the internal microstructure. It can be concluded that considering the internal microstructure of microalgae and characterizing the microstructure of the model by the optical constants of the microalgae components helps to reduce the error caused by the simplification of the actual cell.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3