Computational modeling of Chlamydomonas reinhardtii cellular radiation properties with synergistic consideration of complex structures and compositions

Author:

Lin Li1,Jiang Miao2,Li Xingcan2ORCID,Yang Jia-Yue1ORCID

Affiliation:

1. Shandong University

2. Northeast Electric Power University

Abstract

The radiation characteristics of microalgae are of great significance for the design of photobioreactors and ocean optical remote sensing. Yet the complex structure of microalgae makes it difficult to theoretically predict its radiation characteristics based on traditional Mie theory. In this work, taking Chlamydomonas reinhardtii as an example, a multi-component cell model with a complex structure is proposed, which considers the organelles and shape of microalgae, and the volume change during the production of Chlamydomonas reinhardtii lipids. The theoretical calculation is carried out using the discrete dipole approximation method, and an improved transmission method is used for experimental measurement. The experimental data are compared and analyzed with the multi-component complex structure model, the homogeneous sphere model and the coated sphere model. The results show that the calculation accuracy of the multi-component complex structure model is higher, the error of the scattering cross-section is reduced by more than 8.6% compared with the homogeneous sphere model and coated sphere model, and the absorption cross-section and the scattering phase function are in good agreement with the experimental results. With the increase of lipids, the absorption cross-section and the scattering phase function vary slightly. However, the scattering cross-section has an observed change with increasing wavelength. In addition, the theoretical calculation error can be reduced when the influence of the culture medium is taken into account.

Funder

National Natural Science Foundation of China

Fundamental Research Funds of Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3