Affiliation:
1. Suzhou Ninth People’s Hospital
2. China University of Geosciences
3. Funing People’s Hospital
Abstract
White blood cell (WBC) classification plays an important role in human pathological diagnosis since WBCs will show different appearance when they fight with various disease pathogens. Although many previous white blood cell classification have been proposed and earned great success, their classification accuracy is still significantly affected by some practical issues such as uneven staining, boundary blur and nuclear intra-class variability. In this paper, we propose a deep neural network for WBC classification via discriminative region detection assisted feature aggregation (DRFA-Net), which can accurately locate the WBC area to boost final classification performance. Specifically, DRFA-Net uses an adaptive feature enhancement module to refine multi-level deep features in a bilateral manner for efficiently capturing both high-level semantic information and low-level details of WBC images. Considering the fact that background areas could inevitably produce interference, we design a network branch to detect the WBC area with the supervision of segmented ground truth. The bilaterally refined features obtained from two directions are finally aggregated for final classification, and the detected WBC area is utilized to highlight the features of discriminative regions by an attention mechanism. Extensive experiments on several public datasets are conducted to validate that our proposed DRFA-Net can obtain higher accuracies when compared with other state-of-the-art WBC classification methods.
Funder
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics,Biotechnology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献