A hybrid approach based on multipath Swin transformer and ConvMixer for white blood cells classification

Author:

Üzen HüseyinORCID,Fırat HüseyinORCID

Abstract

AbstractWhite blood cells (WBC) play an effective role in the body’s defense against parasites, viruses, and bacteria in the human body. Also, WBCs are categorized based on their morphological structures into various subgroups. The number of these WBC types in the blood of non-diseased and diseased people is different. Thus, the study of WBC classification is quite significant for medical diagnosis. Due to the widespread use of deep learning in medical image analysis in recent years, it has also been used in WBC classification. Moreover, the ConvMixer and Swin transformer models, recently introduced, have garnered significant success by attaining efficient long contextual characteristics. Based on this, a new multipath hybrid network is proposed for WBC classification by using ConvMixer and Swin transformer. This proposed model is called Swin Transformer and ConvMixer based Multipath mixer (SC-MP-Mixer). In the SC-MP-Mixer model, firstly, features with strong spatial details are extracted with the ConvMixer. Then Swin transformer effectively handle these features with self-attention mechanism. In addition, the ConvMixer and Swin transformer blocks consist of a multipath structure to obtain better patch representations in the SC-MP-Mixer. To test the performance of the SC-MP-Mixer, experiments were performed on three WBC datasets with 4 (BCCD), 8 (PBC) and 5 (Raabin) classes. The experimental studies resulted in an accuracy of 99.65% for PBC, 98.68% for Raabin, and 95.66% for BCCD. When compared with the studies in the literature and the state-of-the-art models, it was seen that the SC-MP-Mixer had more effective classification results.

Funder

Bingol University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3