Affiliation:
1. Sun Yat-sen University
Abstract
The ever-increasing traffic has been driving the demand for compact, high-speed, and low-power-consumption optical transmitters. Thin-film lithium niobite (TFLN) platforms have emerged as promising photonic integrated solutions for next-generation optical transmitters. In this study, we demonstrated the first widely tunable optical transmitter based on a butt-coupling a TFLN modulator with an electrically pumped tunable laser. The tunable laser exhibited a side-mode suppression ratio of > 60 dB, linewidth of 475 kHz, and wavelength-tuning range of over 40 nm. The TFLN modulator presented a voltage-length product of 2.9 V·cm and an electro-optic response of 1.5 dB roll-off at 50 GHz. The optical transmitter support data rate was as high as 160 Gb/s.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Opening funds from the State Key Laboratory of Optoelectronic Materials and Technologies of China, Sun Yat-sen University
Subject
Atomic and Molecular Physics, and Optics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献