Affiliation:
1. Yokohama National University
2. Swinburne University of Technology
3. Tokyo Institute of Technology
Abstract
Detailed spectral analysis of radiation absorption and scattering behaviors of metasurfaces was carried out via finite-difference time-domain (FDTD) photonic simulations. It revealed that, for typical metal-insulator-metal (MIM) nanodisc metasurfaces, absorbance and scattering cross-sections exhibit a ratio of σabs/σsca = 1 at the absorption peak spectral position. This relationship was likewise found to limit the attainable photo-thermal conversion efficiency in experimental and application contexts. By increasing the absorption due to optical materials, such as Cr metal nano-films typically used as an adhesion layer, it is possible to control the total absorption efficiency η = σabs/σsca and to make it the dominant extinction mechanism. This guided the design of MIM metasurfaces tailored for near-perfect-absorption and emission of thermal radiation. We present the fabrication as well as the numerical and experimental spectral characterisation of such optical surfaces.
Funder
Australian Respiratory Council
Japan Society for the Promotion of Science
Adaptable and Seamless Technology Transfer Program through Target-Driven R and D
Subject
Atomic and Molecular Physics, and Optics
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献