Ultrafast Laser Manipulation of In‐Lattice Plasmonic Nanoparticles

Author:

Zhu Han1,Chu Lingrui1,Lv Hengyue1,Ye Qingchuan1,Juodkazis Saulius2,Chen Feng1ORCID

Affiliation:

1. School of Physics State Key Laboratory of Crystal Materials Shandong University Jinan 250100 China

2. Optical Sciences Centre Faculty of Science Engineering and Technology Swinburne University of Technology Hawthorn VIC 3122 Australia

Abstract

AbstractPlasmonic nanoparticles enable manipulation and enhancement of light fields at deep subwavelength scales, leading to structures and devices for diverse applications in optics. Despite hybrid plasmonic materials display remarkable optical properties due to interactions between components in nanoproximity, scalable production of plasmonic nanostructures within a single‐crystalline matrix to achieve an ideal plasmon–crystal interface remains challenging. Here, a novel approach is presented to realize efficient manipulation of in‐lattice plasmonic nanoparticles. Employing ultrafast‐laser‐driven plasmonic nanolithography, metallic nanoparticles with controllable morphology are precisely defined in the crystalline lattice of yttrium aluminum garnet (YAG) crystal. Through direct ion implantation, hybrid plasmonic material composed of nanoparticles embedded in a sub‐surface amorphous YAG layer is created. Subsequently, femtosecond laser pulses guide formation and reshaping of plasmonic nanoparticles from the amorphous layer into the single‐crystalline matrix along direction of light propagation, facilitated by a plasmon‐mediated evolution of laser energy deposition. By tailoring resonance modes and optimizing the coupling between structured particle assemblies, a range of applications including polarization‐dependent absorption and nonlinearity, controllable photoluminescence, and structural color generation is demonstrated. This research introduces a new approach for fabricating advanced optical materials featuring in‐lattice plasmonic nanostructures, paving the way for the development of diverse functional photonic devices.

Funder

National Natural Science Foundation of China

Taishan Scholar Project of Shandong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3