Abstract
In recent years, van der Waals (vdW) polaritons excited by the hybrid of matter and photons have shown great promise for applications in nanoimaging, biosensing, and on-chip light guiding. In particular, polaritons with a flatband dispersion allow for mode canalization and diffractionless propagation, which showcase advantages for on-chip technologies requiring long-range transportation of optical information. Here, we propose a flatband polaritonic router based on twisted α-MoO3 bilayers, which allows for on-chip routing of highly confined and low-loss phonon polaritons (PhPs) along multichannel propagating paths under different circular polarized dipole excitations. Our work combines flatband physics and optical spin– orbit coupling, with potential applications in nanoscale light propagation, on-chip optical switching, and communication.
Funder
National Natural Science Foundation of China
Sichuan Province Science and Technology Support Program
Start-Up Funding of University of Electronic Science and Technology of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献