Chiral enantiomer recognition of amino acids enhanced by terahertz spin beam separation based on a Pancharatnam–Berry metasurface

Author:

Liu Jiayue,Zhang Tianrui,Tan Zhiyu,Cheng Jierong,Chang Shengjiang1,Fan Fei1ORCID

Affiliation:

1. Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology

Abstract

The highly sensitive detection and identification of chiral biochemical substances have attracted extensive attention. Terahertz (THz) spectroscopy and sensing technology have obvious advantages in non-contact and label-free biochemical detection, but the THz chiral spectral response of chiral biochemical substances is too weak to realize highly sensitive chiral enantiomer recognition. Herein, we propose a method of spin beam deflection and separation by using a Pancharatnam–Berry (PB) metasurface to enhance the THz chirality response of chiral amino acids, realizing the identification of chiral enantiomers of the same kind of amino acid. The conjugate spin transmittances and circular dichroism (CD) spectra of d- and l-tyrosine samples on the PB metasurface were measured by an angle-resolved THz time-domain polarization spectroscopy system, and their CD values reached 16.4° and −11.6° at a deflection angle of ±33°, respectively, which were enhanced by about 9.3 and 11.9 times compared with the maximum CD values of the sample without the metasurface. Therefore, this THz chiral sensing method based on a PB metasurface has great potential in highly sensitive chirality identification and enhancement for chiral substances.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3