Freeform optical system design with differentiable three-dimensional ray tracing and unsupervised learning

Author:

Nie YunfengORCID,Zhang Jingang1,Su Runmu12,Ottevaere HeidiORCID

Affiliation:

1. University of Chinese Academy of Sciences

2. Xidian University

Abstract

Optical systems have been crucial for versatile applications such as consumer electronics, remote sensing and biomedical imaging. Designing optical systems has been a highly professional work due to complicated aberration theories and intangible rules-of-thumb, hence neural networks are only coming into this realm until recent years. In this work, we propose and implement a generic, differentiable freeform raytracing module, suitable for off-axis, multiple-surface freeform/aspheric optical systems, paving the way toward a deep learning-based optical design method. The network is trained with minimal prior knowledge, and it can infer numerous optical systems after a one-time training. The presented work unlocks great potential for deep learning in various freeform/aspheric optical systems, and the trained network could serve as an effective, unified platform for generating, recording, and replicating good initial optical designs.

Funder

H2020 Future and Emerging Technologies

Vrije Universiteit Brussel

Fonds Wetenschappelijk Onderzoek

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3