Affiliation:
1. Shanghai University
2. Chinese Academy of Sciences
Abstract
We demonstrate two all-fiber low-frequency shift schemes based on the acousto–optic interaction in a few-mode fiber (FMF). Two acoustically induced fiber gratings (AIFGs) are cascaded in reverse to achieve an efficient cycle conversion between LP11 and LP01 core modes in the FMF while obtaining a frequency shift of 1.8 MHz. In addition, a long-period fiber grating (LPFG) is employed to replace the AIFG, which achieves a lower frequency shift of 0.9 MHz, and its tunable wavelength range exceeds 100 nm. Both schemes show the characteristics of an upward frequency shift. Moreover, we also present a heterodyne detection system based on the above frequency shift schemes, which is verified in response to micro-vibration signals ranging from tens to hundreds of kilohertz, as well as speech signals in a lower frequency range. The experimental results show that these all-fiber frequency shift schemes have potential applications, such as in fiber optic hydrophones, laser speech detection, and fiber optic sensors.
Funder
Science and Technology Commission of Shanghai Municipality
State Key Laboratory of Pulsed Power Laser Technology
National Natural Science Foundation of China
Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning
Subject
Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献