Microfiber evanescent-field photothermal gas detection using acoustic-induced mode-dependent frequency shift

Author:

Zhu Yi1ORCID,Guo Anbo1,Xu Jiangtao1,Zhang Zhengwei1,Pang Fufei1ORCID,Zhang Weijian1,Zeng Xianglong1ORCID,Sun Jianfeng2

Affiliation:

1. The Key Lab of Specialty Fiber Optics and Optical Access Network, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University , Shanghai 200444 , China

2. Shanghai Satellite Network Research Institute Co., Ltd , Shanghai , China

Abstract

Abstract In this study, we experimentally showcase the microfiber evanescent-field photothermal gas detection by exploiting all-fiber MHz-level frequency shift scheme. Based on the acousto-optic interaction effect, the low-frequency shifts of 0.9 MHz and 1.83 MHz can be obtained through the cyclic conversion between the transverse core modes LP01 and LP11 in the few-mode fiber. Our proposed all-fiber frequency shifters show flexible MHz-level up(down) frequency shifts with superior sideband rejection ratio (over 40 dB) and low insertion loss (less than 1 dB). Furthermore, an all-fiber heterodyne interferometric detection system is implemented by leveraging the above low-frequency shifters, in which around 1-μm-diameter microfiber is investigated for photothermal gas detection. A pump-probe configuration is employed to obtain the photothermal effect induced by the gas absorption of the modulated evanescent field. By demodulating the phase of the beat signal output by the interferometer, an equivalent detection limit (1σ) of 32 ppm and a response time of 22 s are achieved for ammonia, as well as 0.24 % instability within 48 pump cycles. Given its compact all-fiber configuration and high sensitivity with fast response, the experimental results can pave the way for widespread applications like heterodyne detection, fiber optical sensors, and interplanetary coherent communications.

Funder

Higher Education Discipline Innovation Project

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3