Integration of Fourier ptychography with machine learning: an alternative scheme

Author:

Chen Yiwen1ORCID,Xu Tingfa1,Sun Haixin2,Zhang Jizhou1,Huang Bo1ORCID,Zhang Jinhua1ORCID,Li Jianan

Affiliation:

1. Beijing Institute of Technology Chongqing Innovation Center

2. Changchun University

Abstract

As the core task of the reconstruction in conventional ptychography (CP) and Fourier ptychographic microscopy (FPM), the meticulous design of ptychographical iterative engine (PIE) largely affects the performance of reconstruction algorithms. Compared to traditional PIE algorithms, the paradigm of combining with machine learning to cross a local optimum has recently achieved significant progress. Nevertheless, existing designed engines still suffer drawbacks such as excessive hyper-parameters, heavy tuning work and lack of compatibility, which greatly limit their practical applications. In this work, we present a complete set of alternative schemes comprised of a kind of new perspective, a uniform design template, and a fusion framework, to naturally integrate Fourier ptychography (FP) with machine learning concepts. The new perspective, Dynamic Physics, is taken as the preferred tool to analyze a path (algorithm) at the physical level; the uniform design template, T-FP, clarifies the physical significance and optimization part in a path; the fusion framework follows two workable guidelines that are specially designed to keep convergence and make later localized modification for a new path, and further establishes a link between FP iterations and the gradient update in machine learning. Our scheme is compatible with both traditional FP paths and machine learning concepts. By combining ideas in both fields, we offer two design examples, MaFP and AdamFP. Results for both simulations and experiments show that designed algorithms following our scheme obtain better, faster (converge at the early stage after a few iterations) and more stable recovery with only minimal tuning hyper-parameters, demonstrating the effectiveness and superiority of our scheme.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3