Affiliation:
1. Key Lab of Quantum Sensing and Precision Measurement
2. North University of China
Abstract
The wide-field (2.42 mm × 1.36 mm, resolution: 5.04 µm) tomography imaging of double circuits is performed using nitrogen-vacancy (NV) center ensembles in a diamond. The magnetic-field distribution on the surface of the circuit produced by the lower layer is obtained. Vector magnetic superposition is used to separate the magnetic-field distribution produced by the lower layer from the magnetic-field distribution produced by two layers. An inversion model is used to perform the tomography imaging of the magnetic-field distribution on the lower layer surface. Compared with the measurements of the upper layer, the difference in the maximum magnetic-field intensity of inversion is approximately 0.4%, and the difference in the magnetic-field distribution of inversion is approximately 8%, where the depth of the lower layer is 0.32 mm. Simulations are conducted to prove the reliability of the imaging. These results provide a simple and highly accurate reference for the detection and fault diagnosis of multilayer and integrated circuits.
Funder
Special Fund for Research on National Major Research Instruments and Facilities of the National Natural Science Foundation of China
National Natural Science Foundation of China
Key Laboratory of Shanxi Province, China
Fund for Shanxi “1331 Project” Key Subjects Construction, China
Subject
Atomic and Molecular Physics, and Optics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献