Abstract
Optical coherence microscopy (OCM) has shown the importance of imaging ex vivo brain slices at the microscopic level for a better understanding of the disease pathology and mechanism. However, the current OCM-based techniques are mainly limited to providing the tissue’s optical properties, such as the attenuation coefficient, scattering coefficient, and cell architecture. Imaging the tissue’s mechanical properties, including the elasticity and viscosity, in addition to the optical properties, to provide a comprehensive multi-parametric assessment of the sample has remained a challenge. Here, we present an integrated photoacoustic elasto-viscography (PAEV) and OCM imaging system to measure the sample’s optical absorption coefficient, attenuation coefficient, and mechanical properties, including elasticity and viscosity. The obtained mechanical and optical properties were consistent with anatomical features observed in the PAEV and OCM images. The elasticity and viscosity maps showed rich variations of microstructural mechanical properties of mice brain. In the reconstructed elasto-viscogram of brain slices, greater elasticity, and lower viscosity were observed in white matter than in gray matter. With the ability to provide multi-parametric properties of the sample, the PAEV-OCM system holds the potential for a more comprehensive study of brain disease pathology.
Funder
Guangdong Provincial Key Laboratory of Advanced Biomaterials
China Postdoctoral Science Foundation
Shenzhen Science and Technology Innovation Program
Natural Science Foundation of Guangdong Province
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献