Wide dynamic range signal detection for underwater optical wireless communication using a PMT detector

Author:

Liu WeijieORCID,Zhang Ling,Huang Nuo,Xu ZhengyuanORCID

Abstract

In the underwater optical wireless communication (UOWC) scenario, a photomultiplier tube (PMT) with higher sensitivity, lower noise, and a larger receiver area is employed as the photon detector to further extend the transmission distance. Due to the complex underwater environment, the high directionality of the light beam, and the vibration of a transceiver, the incident optical power usually spans a very wide dynamic range, and the PMT may operate in any one of the three regimes: pulse, transition, and waveform. While it is difficult to obtain the analytical characterization of the output electric signals across these regimes, this paper resorts to experimental measurements of the upsampled discrete samples within a training symbol duration. Among different statistical distribution fitting options, generalized extreme value (GEV) distribution is found to show excellent performance in fitting the probability density function (PDF) of either multiple samples or the superimposition of all samples within a symbol duration. Then joint sample distribution (JSD) based and superimposed sample distribution (SSD) based symbol detection methods are proposed by adopting the GEV distribution and log-likelihood ratio (LLR) testing criterion. The proposed methods are experimentally evaluated under different received signal optical powers, data rates, and sampling rates. They are shown to outperform the Poisson and Gaussian based maximum likelihood detection methods which are employed for the pulse regime and waveform regime respectively. Furthermore, the effectiveness of the proposed methods in alleviating strong ambient radiation is experimentally verified.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Strategic Priority Research Program of CAS

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 0.5-bit/s/Hz fine-grained adaptive OFDM modulation for bandlimited underwater VLC;Optics Express;2024-01-25

2. Three Gossiping Protocols in Three-Dimensional Underwater Optical Cellular Network;2023 Asia Communications and Photonics Conference/2023 International Photonics and Optoelectronics Meetings (ACP/POEM);2023-11-04

3. Underwater Wireless Optical Communication Using Diversity Reception and Pruned-Term-Based Nonlinear DFE;2023 Asia Communications and Photonics Conference/2023 International Photonics and Optoelectronics Meetings (ACP/POEM);2023-11-04

4. Transmission Characteristics and Spatial Coherence of Partially Coherent Light-Emitting Diode Array in the Ocean;Photonics;2023-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3