Transmission Characteristics and Spatial Coherence of Partially Coherent Light-Emitting Diode Array in the Ocean

Author:

Miao Zhifang1,Han Xiang’e2,Wang Qiyu2,Lu Fang2,Li Qiwei2

Affiliation:

1. School of Telecommunication Engineering, Xidian University, Xi’an 710071, China

2. School of Physics, Xidian University, Xi’an 710071, China

Abstract

Underwater LED light sources are commonly implemented in array configurations with a wide-angle field of view, primarily catering to high-speed communication within a few meters. To increase transmission distance and mitigate oceanic turbulence effects, this paper focuses on the spatial coherence analysis of narrow-beam partially coherent light-emitting diode (PCLED) arrays, examining their average light intensity distribution, beam width, and spatial coherence during oceanic transmission. Based on the extended Huygens–Fresnel integral, the optical field models and spatial characteristics of the radial PCLED array are derived under oceanic conditions, considering parameters such as water attenuation coefficient, kinetic energy dissipation rate, temperature dissipation rate, temperature-to-salinity ratio, as well as the radial filling factor and the sub-beam spatial coherence length of the light source at different transmission distances. The simulations show that, as the spatial coherence length of the sub-beam decreases from hundreds to a few micrometers, the combining distance of the beam arrays also decreases. This reduction in coherence results in the average light intensity distribution degrading into a Gaussian-like distribution, with a significant five-fold decrease in peak intensity. Furthermore, the width of the array spreads, starting from distances of 7 m and 0 m, respectively. The radial PCLED beam array, with its sub-beam spatial coherence length inside micrometers, possesses inherent characteristics that suppress turbulence effects and has future extensive possibilities in the ocean.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3