Series of ultra-low loss and ultra-compact multichannel silicon waveguide crossing

Author:

Peng Zheng12,Feng Junbo3,Du Te2,Cheng Wei12,Wang Yan12,Zang Shengyin1,Cheng Hao1,Ren Xiaodong1,Shuai Yubei1,Liu Hao1,Wu Jiagui1ORCID,Yang Junbo2

Affiliation:

1. Southwest University

2. National University of Defense Technology

3. United Microelectronics Center Co., Ltd

Abstract

Ultra-compact waveguide crossing (UC-WC) is a basic component in optoelectronic fusion chip solutions, as its footprint is smaller in the orders of magnitude than that of traditional photonic integrated circuits (PICs). However, a large loss of UC-WC (decibel level) becomes a barrier to scaling and practicality. Here, we propose a series of ultra-low loss UC-WC silicon devices using an advanced hybrid design that combines the adjoint method with the direct binary search (DBS) algorithm. Simulation results show that our 2 × 2 UC-WC has an insertion loss as low as 0.04 dB at 1550 nm, which is about ten times lower than the previous UC-WC results. In the valuable C-band (1530–1565 nm), the insertion loss of UC-WC is lower than -0.05 dB, and the channel crosstalk is lower than -34 dB. Furthermore, for the 3 × 3 UC-WC device, the highest insertion loss in the entire C-band is approximately -0.07 dB, and the highest channel crosstalk is lower than -33 dB. Additionally, the 4 × 4 and more complex 8 × 8 UC-WC devices were also analyzed. The highest insertion loss for 4 × 4 and 8 × 8 UC-WC in the C-band is only -0.19 dB and -0.20 dB, respectively, and the highest channel crosstalk is approximately -22dB and -28 dB, respectively. These results confirm that the designed devices possess two attractive features simultaneously: ultra-compactness and ultra-low insertion loss, which may be of great value in future large-scale optoelectronic fusion chips.

Funder

Program for New Century Excellent Talents in University

Natural Science Foundation of Hunan Province

Foundation of NUDT

Innovation Support Program for Overseas Students in Chongqing

China Postdoctoral Science Foundation

Innovation Research 2035 Pilot Plan of Southwest University

Science Fund for Distinguished Young Scholars of Chongqing

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3