Real-time channel selection in multi-mode multiplexing optical interconnection implemented by hybrid algorithm and material system

Author:

Du Te1ORCID,Luo Mingyu12ORCID,Ma Hansi1,Jiang Xinpeng1ORCID,Zhang Zhaojian1ORCID,Peng Zheng1,Huang Peixin1,Zou Hongxin3,Yang Junbo1ORCID

Affiliation:

1. National University of Defense Technology

2. The Hong Kong Polytechnic University

3. Hu’nan Key Laboratory of Mechanism and Technology of Quantum Information

Abstract

Multi-mode multiplexing optical interconnection (MMOI) has been widely used as a new technology that can significantly expand communication bandwidth. However, the constant-on state of each channel in the existing MMOI systems leads to serious interference for receivers when extracting and processing information, necessitating introducing real-time selective-on function for each channel in MMOI systems. To achieve this goal, combining several practical requirements, we propose a real-time selective mode switch based on phase-change materials, which can individually tune the passing/blocking of different modes in the bus waveguide. We utilize our proposed particle swarm optimization algorithm with embedded neural network surrogate models (NN-in-PSO) to design this mode switch. The proposed NN-in-PSO significantly reduces the optimization cost, enabling multi-dimensional simultaneous optimization. The resulting mode switch offers several advantages, including ultra-compactness, rapid tuning, nonvolatility, and large extinction ratio. Then, we demonstrate the real-time channel selection function by integrating the mode switch into the MMOI system. Finally, we prove the fabricating robustness of the proposed mode switch, which paves the way for its large-scale application.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Foundation of NUDT

Natural Science Foundation of Hunan Province

Program for New Century Excellent Talents in University

Postgraduate Scientific Research Innovation Project of Hunan Province, China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3