Microstructured large-area photoconductive terahertz emitters driven at high average power

Author:

Khalili MohsenORCID,Vogel TimORCID,Wang YichengORCID,Mansourzadeh SamiraORCID,Singh Abhishek12ORCID,Winnerl Stephan1,Saraceno Clara J.ORCID

Affiliation:

1. Institute of Ion Beam Physics and Materials Research

2. Indian Institute of Technology Indore

Abstract

Emitters based on photoconductive materials excited by ultrafast lasers are well-established and popular devices for THz generation. However, so far, these emitters – both photoconductive antennas and large area emitters - were mostly explored using driving lasers with moderate average powers (either fiber lasers with up to hundreds of milliwatts or Ti:Sapphire systems up to few watts). In this paper, we explore the use of high-power, MHz repetition rate Ytterbium (Yb) based oscillator for THz emission using a microstructured large-area photoconductive emitter, consist of semi-insulating GaAs with a 10 × 10 mm2 active area. As a driving source, we use a frequency-doubled home-built high average power ultrafast Yb-oscillator, delivering 22 W of average power, 115 fs pulses with 91 MHz repetition rate at a central wavelength of 516 nm. When applying 9 W of average power (after an optical chopper with a duty cycle of 50%) on the structure without optimized heatsinking, we obtain 65 µW THz average power, 4 THz bandwidth; furthermore, we safely apply up to 18 W of power on the structure without observing damage. We investigate the impact of excitation power, bias voltage, optical fluence, and their interplay on the emitter performance and explore in detail the sources of thermal load originating from electrical and optical power. Optical power is found to have a more critical impact on large area photoconductive emitter saturation than electrical power, thus optimized heatsinking will allow us to improve the conversion efficiency in the near future towards much higher emitter power. This work paves the way towards achieving hundreds of MHz or even GHz repetition rates, high-power THz sources based on photoconductive emitters, that are of great interest for example for future THz imaging applications.

Funder

Ruhr-Universität Bochum

Deutsche Forschungsgemeinschaft

Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3