cGAN-assisted imaging through stationary scattering media

Author:

Rawat Siddharth1,Wendoloski Jonathan2,Wang Anna1ORCID

Affiliation:

1. School of Chemistry

2. School of Physics

Abstract

Analyzing images taken through scattering media is challenging, owing to speckle decorrelations from perturbations in the media. For in-line imaging modalities, which are appealing because they are compact, require no moving parts, and are robust, negating the effects of such scattering becomes particularly challenging. Here we explore the use of conditional generative adversarial networks (cGANs) to mitigate the effects of the additional scatterers in in-line geometries, including digital holographic microscopy. Using light scattering simulations and experiments on objects of interest with and without additional scatterers, we find that cGANs can be quickly trained with minuscule datasets and can also efficiently learn the one-to-one statistical mapping between the cross-domain input-output image pairs. Importantly, the output images are faithful enough to enable quantitative feature extraction. We also show that with rapid training using only 20 image pairs, it is possible to negate this undesired scattering to accurately localize diffraction-limited impulses with high spatial accuracy, therefore transforming a shift variant system to a linear shift invariant (LSI) system.

Funder

Australian Research Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3