Data-Decoupled Scattering Imaging Method Based on Autocorrelation Enhancement

Author:

Wang Chen1ORCID,Zhuang Jiayan2ORCID,Ye Sichao2,Liu Wei3,Yuan Yaoyao4,Zhang Hongman4,Xiao Jiangjian2

Affiliation:

1. Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315000, China

2. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315000, China

3. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

4. Qilu Aerospace Information Research Institute, Jinan 250100, China

Abstract

Target recovery through scattering media is an important aspect of optical imaging. Although various algorithms combining deep-learning methods for target recovery through scattering media exist, they have limitations in terms of robustness and generalization. To address these issues, this study proposes a data-decoupled scattering imaging method based on autocorrelation enhancement. This method constructs basic-element datasets, acquires the speckle images corresponding to these elements, and trains a deep-learning model using the autocorrelation images generated from the elements using speckle autocorrelation as prior physical knowledge to achieve the scattering recovery imaging of targets across data domains. To remove noise terms and enhance the signal-to-noise ratio, a deep-learning model based on the encoder–decoder structure was used to recover a speckle autocorrelation image with a high signal-to-noise ratio. Finally, clarity reconstruction of the target is achieved by applying the traditional phase-recovery algorithm. The results demonstrate that this process improves the peak signal-to-noise ratio of the data from 15 to 37.28 dB and the structural similarity from 0.38 to 0.99, allowing a clear target image to be reconstructed. Meanwhile, supplementary experiments on the robustness and generalization of the method were conducted, and the results prove that it performs well on frosted glass plates with different scattering characteristics.

Funder

Technology Innovation 2025 Major Project

Natural Science Foundation of Zhejiang

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3