Reliable image dehazing by NeRF

Author:

Jin ZheyanORCID,Xu Zhihai,Feng Huajun,Li Qi,Chen YuetingORCID

Abstract

Image dehazing is a typical low-level visual task. With the continuous improvement of network performance and the introduction of various prior knowledge, the ability of image dehazing is becoming stronger. However, the existing dehazing methods have problems such as the inability to obtain real shooting datasets, unreliable dehazing processes, and the difficulty to deal with complex lighting scenes. To solve these problems, we propose a new haze model combining the optical scattering model and the computer graphics rendering. Based on the new haze model, we propose a high-quality and widely applicable dehazing dataset generation pipeline that does not require paired-data training and prior knowledge. We reconstruct the three-dimensional fog space with array camera and remove haze by thresholding voxel deletion. We use the Unreal Engine 5 to generate simulation datasets and the real shooting in laboratory to verify the effectiveness and the reliability of our generation pipeline. Through our pipeline, we can obtain wonderful dehaze results and dehaze datasets under various complex outdoors lighting conditions. We also propose a dehaze dataset enhancement method based on voxel control. Our pipeline and data enhancement are suitable for the latest algorithm model, these solutions can obtain better visual effects and objective indicators.

Funder

National Natural Science Foundation of China

Civil Aerospace Pre-Research Project

Publisher

Optica Publishing Group

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3