Silicon-based optical phased array with a reconfigurable aperture for “gaze” scanning of LiDAR

Author:

Hu Heming,He Yafang,Chen Baisong,Wang Ziming,Li Yingzhi,Xie Qijie1,Na Quanxin1,Zhi ZihaoORCID,Li Xuetong,Qu Huan,Lo Patrick2,Song Junfeng1

Affiliation:

1. Peng Cheng Laboratory

2. Advance Micro Foundry Pte. Ltd.

Abstract

Light detection and ranging (LiDAR) serves as one of the key components in the fields of autonomous driving, surveying mapping, and environment detection. Conventionally, dense points clouds are pursued by LiDAR systems to provide high-definition 3D images. However, the LiDAR is typically used to produce abundant yet redundant data for scanning the homogeneous background of scenes, resulting in power waste and excessive processing time. Hence, it is highly desirable for a LiDAR system to “gaze” at the target of interest by dense scanning and rough sparse scans on the uninteresting areas. Here, we propose a LiDAR structure based on an optical phased array (OPA) with reconfigurable apertures to achieve such a gaze scanning function. By virtue of the cascaded optical switch integrated on the OPA chip, a 64-, 128-, 192-, or 256-channel antenna can be selected discretionarily to construct an aperture with variable size. The corresponding divergence angles for the far-field beam are 0.32°, 0.15°, 0.10°, and 0.08°, respectively. The reconfigurable-aperture OPA enables the LiDAR system to perform rough scans via the large beam spots prior to fine scans of the target by using the tiny beam spots. In this way, the OPA-based LiDAR can perform the “gaze” function and achieve full-range scanning efficiently. The scanning time and power consumption can be reduced by 1/4 while precise details of the target are maintained. Finally, we embed the OPA into a frequency-modulated continuous-wave (FMCW) system to demonstrate the “gaze” function in beam scanning. Experiment results show that the number of precise scanning points can be reduced by 2/3 yet can obtain the reasonable outline of the target. The reconfigurable-aperture OPA (RA-OPA) can be a promising candidate for the applications of rapid recognition, like car navigation and robot vision.

Funder

Program for Jilin University Science and Technology Innovative Research Team

Jilin Provincial Development and Reform Commission Project

Major Scientific and Technological Program of Jilin Province

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3