Affiliation:
1. National University of Defense Technology
2. Guangxi University
3. Shanghai Institute of Microsystem And Information Technology
4. Southwest University of Science and Technology
5. Shenzhen University
Abstract
A photonic crystal fiber utilizing surface plasmon resonance (PCF-SPR) sensor based on refractive index (RI) control of magnetic fluid (MF) is designed. The air holes of the sensor are arranged in a hexagonal shape, and the optical field transmission channels on both sides of the central air hole can effectively confine the energy of the optical field. We use MF as the sensing medium, and coat the inner wall of the central air hole with gold. It can effectively stimulate the SPR effect to achieve the purpose of magneto-refractive modulation. We study the sensing characteristics of the proposed sensor by finite element analysis. The results show that the highest refractive index sensitivity reaches 19520 nm/RIU in the RI range of 1.42-1.435 and the maximum figure of merit (FOM) is 374.3 RIU-1. In addition, the magnetic field and the temperature response characteristics of the designed sensor are also investigated. In the magnetic field range of 50-130 Oe, the magnetic field sensitivity is 590 pm/Oe. In the temperature range of 24.3-144.3 °C, the temperature sensitivity is only -29.7 pm/℃. The proposed sensor has significant advantages such as stable structure, high sensitivity, easy integration, resistance to electromagnetic interference and can be used for weak magnetic magnitude detection. It has wide application prospects in industrial production, military, and medical equipment.
Funder
National Natural Science Foundation of China
Project of State Key Laboratory of Transducer Technology of China
Guangdong Guangxi joint Science Key Fundation
Science and Technology Major Project of Guangxi
Subject
Atomic and Molecular Physics, and Optics
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献