Excitation of multiple Fano resonances on all-dielectric nanoparticle arrays

Author:

Wang Dandan1,Fan Xinye123,Fang Wenjing12,Niu Huijuan12,Tao Jifang4,Li Chuanchuan3,Wei Xin3,Sun Qinghe1,Chen Huawei1,Zhao Hening1,Yin Yingxin1,Zhang Wenjing3ORCID,Bai Chenglin12ORCID,Kumar Santosh1ORCID

Affiliation:

1. Liaocheng University

2. Liaocheng Key Laboratory of Industrial-Internet Research and Application

3. Chinese Academy of Sciences

4. Shandong University

Abstract

In this paper, an all-dielectric metasurface consisting of a unit cell containing a nanocube array and organized periodically on a silicon dioxide substrate is designed and analyzed. By introducing asymmetric parameters that can excite the quasi-bound states in the continuum, three Fano resonances with high Q-factor and high modulation depth may be produced in the near-infrared range. Three Fano resonance peaks are excited by magnetic dipole and toroidal dipole, respectively, in conjunction with the distributive features of electromagnetism. The simulation results indicate that the discussed structure can be utilized as a refractive index sensor with a sensitivity of around 434 nm/RIU, a maximum Q factor of 3327, and a modulation depth equal to 100%. The proposed structure has been designed and experimentally investigated, and its maximum sensitivity is 227 nm/RIU. At the same time, the modulation depth of the resonance peak at λ = 1185.81 nm is nearly 100% when the polarization angle of the incident light is 0 °. Therefore, the suggested metasurface has applications in optical switches, nonlinear optics, and biological sensors.

Funder

Doctoral Scientific Research Foundation of Liaocheng University

Open Fund of IPOC

The 2021 Introduction and Education Plan for Young Scholars in Colleges and Universities of Shandong Province

Natural Science Foundation of Shandong Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3