Size-dependent sidewall defect effect of GaN blue micro-LEDs by photoluminescence and fluorescence lifetime imaging

Author:

Wang Zhou,Shan Xinyi,Zhu Shijie,Cui Xugao,Fang Zhilai,Xu Gengzhao1,Liu Zhenghui1,Song Wentao1,Xu Ke1,Tian PengfeiORCID

Affiliation:

1. Chinese Academy of Sciences

Abstract

Sidewall defects play a key role in determining the efficiency of GaN-based micro-light emitting diodes (LEDs) for next generation display applications, but there still lacks direct observation of defects-related recombination at the affected area. In this Letter, we proposed a direct technique to investigate the recombination mechanism and size effect of sidewall defects for GaN blue micro-LEDs. The results show that mesa etching will produce stress release near the sidewall, which can reduce the quantum confinement Stark effect (QCSE) to improve the radiative recombination. Meanwhile, the defect-related non-radiative recombination generated by the sidewall defects plays a leading role under low-power injection. In addition, the effective area of the mesas affected by the sidewall defects can be directly observed according to the fluorescence lifetime imaging microscope (FLIM) characterization. For example, the effective area of the mesa with 80 µm is affected by 23% while the entire area of the mesa with 10 µm is almost all affected. This study provides guidance for the analysis and repair of sidewall defects to improve the quantum efficiency of micro-LEDs display at low current density.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Natural Science Foundation of Jiangsu Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3