Affiliation:
1. Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology
2. Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology
Abstract
In this paper, the effect of the laser repetition rate on the long-distance femtosecond laser filament in air is investigated by measuring the fluorescence characteristic of the filament. A femtosecond laser filament emits fluorescence due to the thermodynamical relaxation of the plasma channel. Experimental results show that as the repetition rate of femtosecond laser increases, the fluorescence of the filament induced by a single laser pulse weakens, and the position of the filament moves away from the focusing lens. These phenomena may be attributed to the slow hydrodynamical recovery process of air after being excited by a femtosecond laser filament, whose characteristic time is on the millisecond time scale and comparable to the inter-pulse duration of the femtosecond laser pulse train. This finding suggests that at a high laser repetition rate, to generate an intense laser filament, the femtosecond laser beam should scan across the air to eliminate the adverse effect of slow air relaxation, which is beneficial to laser filament remote sensing.
Funder
National Key Research and Development Program of China
Fundamental Research Funds for the Central Universities
Subject
Atomic and Molecular Physics, and Optics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献