Abstract
Mid-infrared (mid-IR) silicon photonics has been attracting great attention due to its tremendous potential applications in nonlinear optics, ranging, sensing, and spectroscopy. To date, mid-IR silicon devices have usually been developed based on silicon wafers with top-layer silicon thicknesses of hundreds of nanometers. Compared with the thick silicon devices, tens-of-nanometers thin silicon devices can provide giant evanescent-field energy proportions and optical mode areas, being significant for many biochemical sensing and nonlinear optics applications. However, ultra-thin mid-IR silicon devices have seldom been studied due to the difficulty of light coupling. Here, we demonstrated an ultra-thin focusing subwavelength-grating coupler for mid-IR ultra-thin suspended subwavelength-grating-cladding waveguide coupling. The results show that the grating has a maximum coupling efficiency of –7.1 dB at a center wavelength of 2200 nm with a 1-dB bandwidth of ∼115 nm and back reflection of –19.9 dB. We also measured the fiber alignment tolerance of 12 µm for 3-dB coupling efficiency reduction and bending optical loss of 0.25 dB/90°. Our results pave the way to developing mid-IR ultra-thin photonic integrated circuits.
Funder
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献