Abstract
The development of high-performance InP-based quantum dot light-emitting diodes (QLEDs) has become the current trend in ecofriendly display and lighting technology. However, compared with Cd-based QLEDs that have already been devoted to industry, the efficiency and stability of InP-based QLEDs still face great challenges. In this work, colloidal
NiO
x
and Mg-doped
NiO
x
nanocrystals were used to prepare a bilayered hole injection layer (HIL) to replace the classical polystyrene sulfonate (PEDOT:PSS) HIL to construct high-performance InP-based QLEDs. Compared with QLEDs with a single HIL of PEDOT:PSS, the bilayered HIL enables the external quantum efficiencies of the QLEDs to increase from 7.6% to 11.2%, and the
T
95
lifetime (time that the device brightness decreases to 95% of its initial value) under a high brightness of
1000
cd
m
−
2
to prolong about 7 times. The improved performance of QLEDs is attributed to the bilayered HIL reducing the mismatched potential barrier of hole injection, narrows the potential barrier difference of indium tin oxide (ITO)/hole transport layer interface to promote carrier balance injection, and realizes high-efficiency radiative recombination. The experimental results indicate that the use of bilayered HILs with p-type
NiO
x
might be an efficient method for fabricating high-performance InP-based QLEDs.
Funder
National Natural Science Foundation of China
Scientific and Technological Bases and Talents of Guangxi
Natural Science Foundation of Guangxi Province
Special fund for Guangxi Bagui Scholars
Guangxi Hundred-Talent Program
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献