Bound states in the continuum in all-van der Waals photonic crystals: a route enabling electromagnetically induced transparency

Author:

Zong Xueyang1,Li Lixia1,Liu Yufang1ORCID

Affiliation:

1. Henan Normal University

Abstract

Recent studies have demonstrated that multilayer transition metal dichalcogenides can serve as promising building blocks for creating new kinds of resonant optical nanostructures due to their very high refractive indices. However, most of such studies have focused on excitonic regimes of light–material interaction, while there are few on the low-loss region below the bandgap. Here, we conceptually propose all-van der Waals photonic crystals made of electronically bulk MoS2 and h-BN, designed to operate in the telecom wavelengths. And we demonstrate that, due to extremely low absorption loss and destructive interaction between symmetry-protected and resonance-trapped bound states in the continuum, high-quality factor transmission peaks associated with electromagnetically induced transparency (EIT) are observed, thus rendering our proposed structures highly useful for applications like slow light and optical sensing. Furthermore, EIT-like effects are demonstrated in well-engineered MoS2 nanostructures with broken symmetry. We argue that this work is not only of significance for light harvesting in nanostructured van der Waals materials, but provides also a simple path of constructing classical analogues of EIT using dielectric photonic crystals.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Henan Province

National Scientific Research Project Cultivation Fund of Henan Normal University

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3