Ultrafast control of vortex microlasers

Author:

Huang Can1ORCID,Zhang Chen1,Xiao Shumin12ORCID,Wang Yuhan1ORCID,Fan Yubin1ORCID,Liu Yilin1,Zhang Nan1ORCID,Qu Geyang1ORCID,Ji Hongjun1ORCID,Han Jiecai2,Ge Li34ORCID,Kivshar Yuri5ORCID,Song Qinghai16ORCID

Affiliation:

1. State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China.

2. National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China.

3. The Graduate Center, CUNY, New York, NY 10016, USA.

4. Department of Physics and Astronomy, College of Staten Island, CUNY, Staten Island, NY 10314, USA.

5. Nonlinear Physics Centre, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia.

6. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China.

Abstract

Ultrafast vortex microlasers For applications in ultrafast communication, all-optical switches will require low energy consumption, high speed, a strong modulation ratio, a small footprint, and on-chip integration. Although the small footprint and on-chip integration are accessible, the trade-off between low energy consumption and high speed has been challenging. Huang et al. exploited the idea of bound states in the continuum, effectively a high–quality ( Q ) cavity without the physical cavity, to design vortex lasers with highly directional output and single-mode operation. With the trade-off between low energy consumption and high speed now broken, it should be possible to realize ultrafast optical switching that meets all the requirements of modern classic and quantum information. Science , this issue p. 1018

Funder

National Science Foundation

Australian Research Council

National Key Research and Development Program of China Stem Cell and Translational Research

Shenzhen Fundamental Research Fund

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 449 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3