Affiliation:
1. The Hong Kong Polytechnic University
2. Sun Yat-Sen University
Abstract
A low-complexity 3rd-order frequency-domain nonlinear equalizer (FD-NLE) with absolute operation is proposed and experimentally demonstrated for underwater wireless optical communications (UWOC). In the proposed FD-NLE scheme, absolute operation and fast Fourier transform (FFT) with multiplication operations are utilized instead of the square and convolution operations used in conventional polynomial nonlinear equalizers (PNLEs), respectively. Therefore, complexity reductions by over 77.3% and 66.9% can be achieved compared with those of PNLE and PNLE with absolute operation, respectively, with a memory length larger than 8. A UWOC system using orthogonal frequency division multiplexing (OFDM) signals with adaptive bit and power loading is also demonstrated to evaluate the performance of the proposed scheme. Experimental results show that data rate increments by ∼ 5.6% and ∼ 5.7% at BER below 7% hard-decision forward error correction (HD-FEC) limit of 3.8 × 10−3, compared with PNLE and PNLE with absolute operation, respectively, are realized using the proposed scheme. Meanwhile, the proposed scheme has an up to 14.7% complexity reduction compared with conventional frequency-domain PNLE (FD-PNLE), while maintaining similar equalization performance.
Funder
Basic and Applied Basic Research Foundation of Guangdong Province
Science and Technology Planning Project of Guangdong Province
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献