Direct-focusing surface-emitting laser

Author:

Hirose Kazuyoshi1,Kamei Hiroki1,Sugiyama Takahiro1

Affiliation:

1. Central Research Laboratory

Abstract

Focusing is a fundamental optical technique that has been widely implemented via lenses. Here, we demonstrate direct focusing from a band-edge surface-emitting laser, whose emission area is 200 µm × 200 µm, without any lenses. To achieve this, a phase-modulating layer is incorporated into the laser cavity. This layer acts simultaneously as a lasing cavity similar to that of a photonic crystal laser and as a holographic spatial-phase modulator, which transforms the output beam into a focusing beam by slightly shifting the positions of holes from a periodic square lattice. Beam profiles along the surface normal clearly show that direct focusing occurs with a focal length and focal spot size of 310 µm and 6.1 µm, respectively. The focal length agrees well with the theoretical value, and the focal spot size is 2.0 times the diffraction-limited size, which indicates that the higher transverse modes are sufficiently suppressed. In addition, the power density at the focus is 540 times higher than that at the near-field plane. Interestingly, a focus pattern is also observed in the opposite direction at the near-field plane, which indicates that a converging beam and a diverging beam are simultaneously emitted because of the nature of the in-plane band-edge laser. The conventional beam patterns of semiconductor laser cavities are limited to the regime of two-dimensional projection based on a Fourier hologram. In contrast, we demonstrate the simplest form of a three-dimensional point cloud based on a Fresnel hologram, which is quite useful for micro-sensing applications such as microfluidics, flow cytometry, blood sensors, and endoscopy.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3