Process optimization of contact hole patterns via a simulated annealing algorithm in extreme ultraviolet lithography

Author:

Zhao Rongbo1,Wei Yayi23,Xu Hong1,He Xiangming1ORCID

Affiliation:

1. Tsinghua University

2. Institute of Microelectronics of Chinese Academy of Sciences

3. University of Chinese Academy of Sciences

Abstract

The critical dimension (CD), roughness, and sensitivity are extremely significant indicators for evaluating the imaging performance of photoresists in extreme ultraviolet lithography. As the CD gradually shrinks, tighter indicator control is required for high fidelity imaging. However, current research primarily focuses on the optimization of one indicator of one-dimensional line patterns, and little attention has been paid to two-dimensional patterns. Here, we report an image quality optimization method of two-dimensional contact holes. This method takes horizontal and vertical contact widths, contact edge roughness, and sensitivity as evaluation indicators, and uses machine learning to establish the corresponding relationship between process parameters and each indicator. Then, the simulated annealing algorithm is applied to search for the optimal process parameters, and finally, a set of process parameters with optimum image quality is obtained. Rigorous imaging results of lithography demonstrate that this method has very high optimization accuracy and can improve the overall performance of the device, dramatically accelerating the development of the lithography process.

Funder

National Natural Science Foundation of China

Tsinghua University Initiative Scientific Research Program

Beijing Municipal Science & Technology Commission, Administrative Commission of Zhongguancun Science Park

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3