Light-stimulated low-power artificial synapse based on a single GaN nanowire for neuromorphic computing

Author:

Zhou Min12,Zhao Yukun12ORCID,Gu Xiushuo1,Zhang Qianyi1,Zhang Jianya3,Jiang Min12ORCID,Lu Shulong12

Affiliation:

1. Chinese Academy of Sciences (CAS)

2. University of Science and Technology of China

3. Suzhou University of Science and Technology

Abstract

The fast development of the brain-inspired neuromorphic computing system has ignited an urgent demand for artificial synapses with low power consumption. In this work, it is the first time a light-stimulated low-power synaptic device based on a single GaN nanowire has been demonstrated successfully. In such an artificial synaptic device, the incident light, the electrodes, and the light-generated carriers play the roles of action potential, presynaptic/postsynaptic membrane, and neurotransmitter in a biological synapse, respectively. Compared to those of other synaptic devices based on GaN materials, the energy consumption of the single-GaN-nanowire synaptic device can be reduced by more than 92%, reaching only 2.72×10−12  J. It is proposed that the oxygen element can contribute to the synaptic characteristics by taking the place of the nitrogen site. Moreover, it is found that the dynamic “learning−forgetting” performance of the artificial synapse can resemble the behavior of the human brain, where less time is required to relearn the missing information previously memorized and the memories can be strengthened after relearning. Based on the experimental conductance for long-term potentiation (LTP) and long-term depression (LTD), the simulated network can achieve a high recognition rate up to 90% after only three training epochs. Such few training times can reduce the energy consumption in the supervised learning processes substantially. Therefore, this work paves an effective way for developing single-nanowire-based synapses in the fields of artificial intelligence systems and neuromorphic computing technology requiring low-power consumption.

Funder

National Natural Science Foundation of China

Research Program of Scientific Instrument and Equipment of CAS

Key Research Program of Frontier Science, Chinese Academy of Sciences

Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3